sábado, 24 de septiembre de 2011

NEURONA


Neurona es el nombre que se da a la célula nerviosa y a todas sus prolongaciones. Son células excitables especializadas para la recepción de estímulos y la conducción del impulso nervioso. Su tamaño y forman varían considerablemente. Cada una posee un cuerpo celular desde cuya superficie se proyectan una o más prolongaciones denominadas neuritas. Las neuritas responsables de recibir información y conducirla hacia el cuerpo celular se denominan dendritas. La neurita larga única que conduce impulsos desde el cuerpo celular; se denomina axón. Las dendritas y axones a menudo se denominan fibras nerviosas. Las neuronas se hallan en el encéfalo, médula espinal y ganglios. Al contrario de las otras células del organismo, las neuronas normales en el individuo maduro no se dividen ni reproducen.
 
 











  Esquema de una neurona. Micrografía electrónica de una neurona de la médula espinal.

Aunque el tamaño del cuerpo celular puede variar desde 5 mm hasta 135 mm de diámetro, las dendritas pueden extenderse hasta más de un metro (por ejemplo los axones de las neuritas que van desde la región lumbar de la médula hasta los dedos del pie). El número, la longitud y la forma de la ramificación de las neuritas brindan un método morfológico para clasificar a las neuronas.
Las neuronas unipolares tiene un cuerpo celular que tiene una sola neurita que se divide a corta distancia del cuerpo celular en dos ramas, una se dirige hacia alguna estructura periférica y otra ingresa al SNC. Las dos ramas de esta neurita tienen las características estructurales y funcionales de un axón. En este tipo de neuronas, las finas ramas terminales halladas en el extremo periférico del axón en el sitio receptor se denominan a menudo dendritas. Ejemplos de neuronas unipolares se hallan en el ganglio de la raíz posterior.
Las neurona bipolares poseen un cuerpo celular alargado y de cada uno de sus extremos parte una neurita única. Ejemplos de neuronas bipolares se hallan en los ganglios sensitivos coclear y vestibular.
Las neuronas multipolares tienen algunas neuritas que nacen del cuerpo celular. Con excepción de la prolongación larga, el axón, el resto de las neuritas son dendritas. La mayoría de las neuronas del encéfalo y de la médula espinal son de este tipo.


 También pueden clasificarse de acuerdo al tamaño. Las neuronas de Golgi tipo I tienen un axón largo que puede llegar a un metro o más de longitud, por ejemplo largos trayectos de fibras del encéfalo y médula espinal y las fibras nerviosas de los nervios periféricas. Las células piramidales de la corteza cerebral, las células de Purkinje de la corteza cerebelosa y las células motoras de la célula espinal son ejemplos.
Las neuronas de Golgi tipo II tienen un axón corto que termina en la vecindad del cuerpo celular o que falta por completo. Superan en número ampliamente a las de tipo I. Las dendritas cortas que nacen de estas neuronas les dan aspecto estrellado. Ejemplos de este tipo de neuronas se hallan en la corteza cerebral y cerebelosa a menuda tienen una función de tipo inhibidora.


La clasificación anterior se resume a manera de cuadro:
Clasificación morfológica
Disposiciones de las Neuritas
Localización
Número, longitud
Modo de ramificación de las neuritas


Unipolar
La neurita única se divide a corta distancia del cuerpo celular.
Ganglio de la raíz posterior.
Bipolar
La neurita única nace de cualquiera de los extremos del cuerpo celular.
Retina, cóclea sensitiva y ganglios vestibulares.
Multipolar
Muchas dentritas y un axón largo.
Tractos de fibras del encéfalo y la médula espinal, nervios periféricos y células motoras de la médula espinal.
Tamaño de la neurona


De Golgi tipo I
Axón largo único.
Tractos de fibras del encéfalo y la médula espinal, nervios periféricos y células motoras de la médula espinal. Corteza cerebral y cerebelosa.
De Golgi tipo II
Axón corto que con las dentritas se asemeja a una estrella.
Corteza cerebral y cerebelosa.


El cuerpo de la célula nerviosa, como el de las otras células, que consiste esencialmente en una masa de citoplasma en el cual está incluido el núcleo; está limitado por su lado externo por una membrana plasmática. Es a menudo el volumen del citoplasma dentro del cuerpo de la célula es mucho menor que el volumen del citoplasma en las neuritas.

Núcleo: por lo común se encuentra en el centro del cuerpo celular. Es grande, redondeado pálido y contiene finos gránulos de cromatina muy dispersos. Por lo general las neuronas poseen un único núcleo que está relacionado con la síntesis de ácido ribononucleico RNA. El gran tamaño probablemente se deba a la alta tasa de síntesis proteica, necesario para mantener el nivel de proteínas en el gran volumen citoplasmático presente en las largas neuritas y el cuerpo celular.
Sustancia de Nissl: consiste en gránulos que se distribuyen en todo el citoplasma del cuerpo celular excepto en la región del axón. Las micrografías muestran que la sustancia de Nissl está compuesta por retículo endoplasmático rugoso dispuestos en forma de cisternas anchas apiladas unas sobre otras. Dado que los ribosomas contienen RNA, la sustancia de Nissl es basófila y puede verse muy bien con tinción azul de touluidina u otras anilinas básicas y microscopio óptico. Es responsable de la síntesis de proteínas, las cuales fluyen a lo largo de las dendritas y el axón y reemplazan a las proteínas que se destruyen durante la actividad celular. La fatiga o lesión neuronal ocasiona que la sustancia de Nissl se movilice y concentre en la periferia del citoplasma. Esto se conoce con el nombre de cromatólisis.
Aparato de Golgi: cuando se ve con microscopio óptico, después de una tinción de plata y osmio, aparece como una red de hebras ondulantes irregulares alrededor del núcleo. En micrografías electrónicas aparece como racimos de cisternas aplanadas y vesículas pequeñas formadas por retículos endoplasmáticos lisos. Las proteínas producidas por la sustancia de Nissl son transferidas al aparato de Golgi donde se almacenan transitoriamente y se le pueden agregar hidratos de carbono. Las macromoléculas pueden ser empaquetadas para su transporte hasta las terminaciones nerviosas. También se le cree activo en la producción de lisosomas y en la síntesis de las membranas celulares.
Mitocondrias: Dispersas en todo el cuerpo celular, las dendritas y el axón. Tienen forma de esfera o de bastón. En las micrografías electrónicas las paredes muestran doble membrana. La membrana interna exhibe pliegues o crestas que se proyectan hacia adentro de la mitocondria. Poseen muchas enzimas que toman parte en el ciclo de la respiración, por lo tanto son importantes para producir energía.
Neurofibrillas: Con microscopio óptico se observan numerosas fibrillas que corren paralelas entre si a través del cuerpo celular hacia las neuritas (tinción de plata). Con microscopio electrónico se ven como haces de microfilamentos de aproximadamente 7 mm de diámetro. Contienen actina y miosina y es probable que ayuden al transporte celular.
Microtúbulos: Se ven con microscopio electrónico y son similares a aquellos observados en otro tipo de células. Tienen unos 20 a 30 nm de diámetro y se hallan entremezclados con los microfilamentos. Se extienden por todo el cuerpo celular y sus prolongaciones. Se cree que la función de los microtúbulos es el transporte de sustancias desde el cuerpo celular hacia los extremos dístales de las prolongaciones celulares.
Lisosomas: Son vesículas limitadas por una membrana de alrededor de 8 nm de diámetro. Sirven a la célula actuando como limpiadores intracelulares y contienen enzimas hidrolíticas.
Centríolos: Son pequeñas estructuras pares que se hallan en las células inmaduras en proceso de división. También se hallan centríolos en las células maduras, en las cuáles se cree que intervienen en el mantenimiento de los microtúbulos.
Lipofusina: Se presenta como gránulos pardo amarillentos dentro del citoplasma. Se estima que se forman como resultado de la actividad lisosomal y representan un subproducto metabólico. Se acumula con la edad.
Melanina: Los gránulos de melanina se encuentran en el citoplasma de las células en ciertas partes del encéfalo, como por ejemplo la sustancia negra del encéfalo. Su presencia está relacionada con la capacidad para sintetizar catecolaminas por parte de aquellas neuronas cuyo neurotransmisor es la dopamina. 
MEMBRANA PLASMÁTICA
La membrana plasmática forma el límite externo continuo del cuerpo celular y sus prolongaciones y en la neurona es el sitio de iniciación y conducción del impulso nervioso. Su espesor es de aproximadamente 8nm lo cuál la hace demasiado delgada para poder ser observada por un microscopio óptico. Con microscopio electrónico se observa una campa interna y otra externa de moléculas dispuestas muy laxamente (cada capa aproximadamente de 2,5 nm) y separadas por una capa intermedia de lípidos. Moléculas de hidrato de carbono se encuentran adheridas al exterior de la capa plasmática y se unen con proteínas o lípidos formando lo que se conoce como cubierta celular o glucocálix.
La membrana plasmática y la cubierta celular juntas forman una membrana semipermeable que permite la difusión de ciertos iones a través de ella pero limita otras. En estado de reposo los iones de K+ difunden a través de la membrana plasmática desde el citoplasma celular hacia el líquido tisular. La permeabilidad de la membrana a los iones de K+ es mucho mayor que el influjo de Na+. Esto da como resultado una diferencia de potencial estable de alrededor de -80 mv que pueden medirse a través de la membrana ya que el interior es negativo en relación al exterior. Este potencial se conoce como potencial de reposo.
Cuando una célula nerviosa es excitada (estimulada) por un medio eléctrico, mecánico o químico, ocurre un rápido cambio de permeabilidad de la membrana a los iones de Na+, estos iones difunden desde el liquido tisular a través de la membrana plasmática hacia el citoplasma celular. Esto induce a que la membrana se despolarise progresivamente. La súbita entrada de iones Na+ seguida por la polaridad alterada produce determinado potencial de acción que es de aproximadamente +40 mv. Este potencial es muy breve (5 nseg) ya que muy pronto la mayor permeabilidad de la membrana a los iones de Na+ cesa y aumenta la permeabilidad de los iones K+, de modo que estos comienzan a fluir desde el citoplasma celular y así el área localizada de la célula retorna al estado de reposo. 

Una vez generado el potencial de acción se propaga por la membrana plasmática, alejándose del sitio de iniciación y es conducido a lo largo de las neuritas como el impulso nervioso. Una vez que el impulso nervioso se ha difundido por una región dad la membrana plasmática, no puede provocarse otro potencial en forma inmediata. La duración de este estado no excitable se denomina período refractario.
Así como en un cable se elige el mejor conductor, el cobre, análogamente el axón que está lleno de axoplasma, es un fluido conductor por sus iones positivos de potasio y moléculas de proteínas cargadas negativamente. La conducción pasiva ocurre en cualquier neurona piramidal del cerebro, cuando las dendritas hacen contacto con otra neurona. Las dendritas a diferencia del axón, no transmiten el potencial de acción, son simples membranas pasivas que pueden modelarse como redes RC.

Donde la Rint es la resistencia del medio externo, la Rint es la resistencia del medio interno, Rm es la resistencia de la mebrana y la Cm es la capacidad de la membrana.
Si bien la propagación es instantánea, la señal se atenúa rápidamente, aún en tramos cortos.

La conducción activa (modelo todo o nada) ocurre en un axón cualquiera, en donde un tramo de membrana se despolariza, activa los canales y genera un evento imparable.
En el gráfico a) el potencial del receptor sensitivo es -80 mv y en el b) es -61 mv. En tiempo cero el fluido interno de la neurona está a -90mv. El potencial aumenta hasta alcanzar el umbral crítico en -82 mv en el caso a) en 0.1 seg y en el caso b) en 0.02 seg. En ese momento la neurona "enciende" y su potencial interno rápidamente crece a +10 mv y cae también rápidamente a -90 mv nuevamente (spike).
Un estímulo que en vez de -80 mv sea -61 mv implica un cambio de frecuencia en el potencial de acción de 10 a 50 Hz. Lo mejor de este modo de conducción es que la amplitud no decae nunca, aunque es más lenta que la conducción pasiva.
El sistema nervioso consiste en un gran número de neuronas vinculadas entre sí para formar vías de conducción funcionales. Donde dos neuronas entran en proximidad y ocurre una comunicación interneuronal funcional ese sitio se llama sinapsis.
El tipo mas frecuente de sinapsis es el que se establece entre el axón de una neurona y la dendrita de otra (sinapsis axodendrítica). A medida que el axón se acerca puede tener una expansión terminal (botón terminal) o puede presentar una serie de expansiones (botones de pasaje) cada uno de los cuales hace contacto sináptico. Otro tipo de sinapsis es el que se establece entre el axón de una neurona y el cuerpo celular de otra neurona (sinapsis axosomática). Cuando un axón de una neurona hace contacto con el segmento inicia de otro axón, donde comienza la vaina de mielina, se conoce como sinapsis axoaxónicas.

No hay comentarios:

Publicar un comentario